Casimir Stress by Euler-Maclaurin Summation
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We calculate the Casimir energy and pressure due to quantum fluctuations of the electromagnetic
field in vacuo. We accomplish renormalisation by utliising the Euler-Maclaurin summation formula.
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1. The Euler-Maclaurin Summation Formula

Definition. Given a function f of (at least) class C™ (m € Z7T), the Euler-Maclaurin
summation formula is a mathematical identity relating the sum of f to its integral and is
given by:
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where { By} denote the set of Bernoulli numbers, {Py(x)} = {Bi(x — [z])} denote the set
of associated periodic Bernoulli polynomials and n, N € N.

2. The Casimir Energy

The spectrum of modes within a perfectly conducting box of dimensions L, x L, x L. with vacuum
interior is given
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where ng, ny,n, € Z* and N = ng,ny,n,. We introduce the non-dimensional Q2 by
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The vacuum energy of the system is then a sum over all possible modes:
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This expression is infinite, so must be regularised:
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in terms of the regulator W(y) which is a smooth function of s > 0 and Q, with Wy(2y) =1
for all €2y. To analyse the geometry of the Casimir effect, we consider the limit L., L, — oo, so
that n;, n, become continuous and we may write
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Introducing the notation
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we may write this as

h
E(s) = WCO 2/0 / dry \/T2 + 12 + n? Ws<\/r§+r§+n§>.

We may change variables using a polar coordinate representation (r, = Rsinf,r, = Rcosf) with
R?=1r2 4 ’I“Z and dr, dr, = RdRdf so that
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Introducing the change of variable U? = R? + n? with U dU = RdR, we have
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where

fs(nz) = /UOO U2W,(U) dU.
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If we choose the regulator W(U) = e~*U then
fs(ny) = / U?e=sV du
U=n,

We may then use the Euler-Maclaurin summation formula (1) in order to evaluate £(s). With
m = 2, we have
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The terms of order s occur from the integral involving the periodic Bernoulli functions and so
will vanish upon renormalization. Thus, we define the regularized energy density
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and the renormalized energy density is
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This is the renormalized energy density for one of the modes. There is an equal energy density for
the other mode and so the total energy density is simply
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3. The Casimir Pressure

In this section, we shall consider only the TE modes (an analogous approach works for the TM
modes also). The pre-potential for the TE modes in our perfectly conducting box are given by
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in terms of the normalization constant NiF and where
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Given the pre-potential, a mode of the TE component of the (spatial) potential 1-form is given by
Ay = oy
yielding a mode of the operator-valued potential 1-form
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since AJE is real and we have introduced the creation and annihilation operators ZL\L,@N respectively
satisfying
[aN,aH = Syw  and  Gn]0) =0 (5)

where |,0) denotes the vacuum state with (0]0) = 1. The fields are obtained from ATE:
e = jwyATE  and  BIF = #dATE.

In order to normalize the modes, we equate the vacuum expectation value of the energy to 1/2hwy
on a mode-by-mode basis. The vacuum energy is given by
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where V denotes the volume of the perfectly conducting box and in terms of the operator-valued
energy density 3-form
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The fields in the perfectly conducting box for the TE modes are given using the pre-potential ¢ .7
(4) and yield the vacuum expectation of the operator-valued energy density 3-form!

(0| Byar|0) = %0 (wfv ATE A HATE + 24 ATE A dA]TVE) .

See (A) for further details of vacuum expectation values

4



Integrating this over the whole box V' we obtain
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we are able to normalize the modes. We have
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Having normalized the modes, we may now calculate the force at a face of the box by using the
operator-valued stress 2-forms
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in terms of a Killing vector K. The vacuum expectation value of the force component in the
K-direction due to one mode of the quantum electromagnetic fluctuations in the vacuum is given
by
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The vacuum expectation value of the total force is then given by summing all these modes:
FEo= Y Fy.
N

To compute the vacuum expectation value of the force on the xy-face at z = L, we use the Killing
vector K = 0,. Using the fields as defined above, we obtain
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Substituting in for the normalization coefficient NJF from (6) yields
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using (2). Thus, the vacuum expectation value of the total force is given by
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Once again this expression is infinite so needs to be regularized:
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in terms of some regulating function W,(€y). Expanding this out we have
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using (2). As before, we consider the limit L, L, — oo so that n,,n, become continuous and
we may write
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Using the r,, 7, notation (3), we may write this as
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Introducing a polar coordinate representation (r, = Rsin,r, = Rcosf) with R* = r2 4+ r2 and
dry dry, = RdR df we obtain
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where we have chosen the same regulator as before: W,(U) = e=*U. This is now in a form
suitable to use Euler-Maclaurin (1). With m = 2, we have
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The only non-zero terms arise from —B,;/24¢"'(0) and the term involving the periodic Bernoulli
functions, though these terms are of order s2 and so vanish upon renormalization. Thus, we define
the regularized total force density (pressure) to be
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and the renormalized total force density (pressure) to be
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This is only for the TE modes, but there is an analogous derivation to find the renormalized
pressure for the TM modes, which is equal to that of the TE modes. Hence, the total pressure is
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A. Vacuum Expectation Values

Let KNM denote an operator-valued p-form quadratic in the creation and annihilation operators
aN,aTM. Specifically, let
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in terms of the operator-valued forms
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From (5), we have
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where we have used the commutation relation (5) and the normalization of the vacuum state

(0]0) = 1. This gives
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